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Abstract 
 

Inertial orientation tracking is something that is being looked into right now, especially when it 

comes to capturing human movement outside in real time. Quaternions are used to show how 

the navigation frame and the body frame are connected in a way that makes them rotate 

together. In this article, we explain how to use a quaternion-based Extended Kalman Filter to 

figure out how a rigid body is oriented in three dimensions (EKF). The EKF uses the readings 

from an Inertial Measurement Unit (IMU), which is a combination of a tri-axial magnetic 

sensor and an accelerometer. The solution that has been suggested is a universal filter that 

doesn't set the amount of freedom at the connections among the different parts of the model. 

Even when the observatory conditions are important, the algorithm's performance can be 

measured with computer simulations and real-world testing. 
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1. Introduction  
Inertial motion capture systems are made up of networks of body sensors. Here, 

inertial measurement unit (IMU) sensors are connected to every important part that needs to 

be watched (Kulbacki et al. 2015; Roetenberg et al. 2009). The tracked object model, also 

called the skeleton, is made up of rigid-body segments, or "bones," that are connected by 

joints. The motion of the person may be captured by mapping the orientations of the IMUs 

to certain parts of the body model. It is possible to follow the overall stance if one has 

information about the orientations of all of the segments throughout time. Published 

research shows that there are many different ways to figure out where something is based 

on a single IMU output signal. Some examples of these approaches are Kalman filters 

(Sabatini 2011; Madgwick et al. 2011) and complementing filters (Mahony et al. 2008). 

This strategy involves just a loose coupling and treats each component in isolation, has a 

number of limitations. It is not possible to readily include joint limitations into the tracking, 

like those that are inherent in the human anatomy. During the process of estimating, the 

links among the different segments are lost (Miezal et al. 2013). Additionally, it has been 

shown that closely linked systems, in which all parameters and measurements are evaluated 

concurrently in a single estimate problem, yield superior performance (Young 2010). 



 

Young et al(2010) .'s study used the "propagation of linear accelerations across the 

segment hierarchy" to make it easier to find the gravity components during high-speed 

movements. According to Szczsna et al. (2016), the foundation of this method is a 

relatively simple complementary filter. The Denavit–Hartenberg convention serves as the 

foundation for these kinds of solutions, while Euler angles serve as the representation of 

orientation for them. 
 

Extended Kalman filters are proposed by the authors of the lajpah et al. (2014) study for 

each segment, and they use state vectors with 18 elements. The orientation is represented by 

quaternions with the help of this method. Walking is the sole activity that can provide the 
 

remedy. Vikas and Crane (2016) offer an alternative idea in which the joint angle is 

estimated by putting more than one sensor on the segment. Measurements of vestibular 

dynamic inclination serve as the foundation for this system, which can only provide 

estimations for two Euler angles. IMU sensors allow multibody systems to estimate and 

monitor a variety of additional characteristics, including locations, velocities, and 

accelerations (Torres-Moreno et al. 2016). Lajpah et al. (2014) report errors, but they can't 

be compared because the experiments were done in different ways and focused on different 

movements. Also, the errors were calculated in a way that was not consistent. Even with 

these things, the average angle errors were all between 4° and 7°. The numbers that were 

used as references came from a variety of sources, including simulations, mechanical and 

optical systems, and calculations made using depth camera data. 

 

In this article, a quaternion-based Kalman filter for AHRS is defined using an 

Adaptive-Step Gradient Descent (ASGD) method. In order to prevent singularities, 

quaternions are used in the representation of the quadrotor's orientation. In the middle of the 

quadrotor frame are the inertial and magnetic sensors that are used to measure angular 

velocity etc., After the gradient descent method and preprocessing of the accelerometer 

have created the observation quaternions, they are fed into the Kalman filter . The angular 

velocity and the observation quaternions that are generated by ASGD are brought together 

by the Kalman filter. Since magnetic distortion would have an effect on the calculation of 

level attitude (pitch and roll angles), an AHRS method was developed to isolate the 

magnetometer from the ASGD in order to just give heading reference. This approach is 

known as the AHRS algorithm. A flight controller that is compact in size has been 

developed for the purpose of building a quadrotor. 

 

2. Related Works 

 

The technique for designing a quadrotor places a significant emphasis on orientation 

estimation, which is also a fundamental component of real-time monitoring of human body 

movements (Liem M.C., 2014) and placing industrial robot arms (KluzR.,. 2014). Image-

based systems (Vianchada C., 2014), magnetic tracking systems (Song Shuang, et al. 2014), 



and ultrasonic tracking systems have each contributed to the development of a number of 

algorithms for the estimate of orientation and/or location (Kim SeongJin, 2013). These 

techniques of origin are vulnerable to the noise of the surrounding environment and have a 

restricted measuring range. In recent years, inertial and magnetic sensors have been utilized 

more often in quadrotors or aerial robots for the purpose of orientation estimation. These 

sensors do not experience any restrictions in terms of their measuring range. These little 

modules, which can be mounted to a quadrotor and used to autonomously identify direction 

without the need for supplied technology, are very portable. 

 

Because quaternions work in R4, it is much simpler to describe any rotations in R3 

without encountering the singularity issue. This has led to the quaternion being a preferred 

alternative to the Euler angles in the process of orientation representation (Alaimo A., 2013). A 

strap-down inertial system typically consists of a small-size tri-axis MEMS gyroscope and 
 

accelerometer that are attached to a quadrotor. Accelerometers, on the other hand, are 

unable to determine orientation since they cannot detect rotation around the vertical axis. It 

is termed the Attitude Heading Reference System (AHRS) when it is used in a navigation 

system (Collinson R. P. G..2011). In his 2011 paper, Liang Yan-de discussed a 

Complementary Filter (CF) that makes use of magnetic and inertial sensors. The 

quaternion-based adaptive-gain complementary filter is a proposal that was made by 

Calusdian et al. (2011). Gradient Descent (GD) algorithm is an iterative approach that was 

reported in (Zhang Hao, 2013) and (Madgwick Sebastian O. H., 2011) utilising MARG 

(Magnetic, Angular Rate, and Gravity) sensors. Both of these studies were conducted with 

MARG sensors. A gyroscope is used in both CF and GD in order to ascertain orientation. 

The orientation inaccuracy that is caused by gyro bias drifts may be removed using an 

accelerometer in conjunction with a magnetometer. However, it is important to note that 

these approaches do not incorporate system flaws or the measurement noise of the sensors; 

hence, the accuracy of the estimate is dependent on the inertial and magnetic sensors. 

 

The Kalman Filter (KF) and the Extended Kalman Filter (EKF), both of which are 

examples of well-known optimum estimate techniques, have found use in a variety of 

contexts, most notably in the estimation of the attitude of spacecraft (Lefferts E.J., 1982). 

Sabatini (2012) suggested a typical quaternion-based EKF for the purpose of detecting 

orientation via the use of 9-DOF sensors. Modeling included ten states, including four-

dimensional quaternions, three-dimensional acceleration bias, and three-dimensional 

magnetic field bias. After constructing the Jacobian matrix, the measurement model was 

linearized so it could be used. In (Liang Jian-hong, 2012), a cubic polynomial temperature 

curve was used to correct the gyro, and an EKF based on quaternions was given for the 

AHRS. This was done so that a better estimate of the gyro bias drifts could be made 

without making the state vectors bigger. Recent research (Li Wei, 2013, Lee J.K., 2012, and 

Miao Cun-xiao, 2014) has focused on how to deal with external acceleration or magnetic 

disturbance, both of which would mess up the orientation estimate a lot. On the other hand, 

it's important to remember that the typical EKF has to linearize the process models and/or 



measurement models; this will always result in linearization errors being introduced into 

the Kalman filter. In addition, the calculation of the Jacobian matrix by microcontrollers is 

a significant challenge in terms of computing burden. 
 
 
 

There have been many different ways created for quaternion-based nonlinear 

observation in order to prevent linearizing measurement models and lower the amount of 

computing burden. Bach-man et al. wrote about a better Kalman filter based on quaternions that 

can track the human body (2006). Using a Gauss-Newton iteration method, accelerometer and 

magnetometer data were preprocessed to get quaternions, which were then given to the Kalman 

filter (Marins J.L., 2001). In the paper written by Yun Xiao-ping in 2003, the authors lowered 

the dimensionality of state vectors by using a reduced-order Gauss-Newton approach that made 

use of error quaternions. In fact, Wahba's problem can be thought of as an estimation problem 

in which measurements of vectors are taken at a single point in time. A "single-frame" 

algorithm is a name for this type of solution. For a Kalman filter based on quaternions, the 

QUaternion ESTimator (QUEST) method was made. People think that this is one of the best 

"single-frame" algorithms for quaternions (Yun Xiao-ping, 2006 ). In order to use the 

Gauss-Newton method, you would also have to figure out the objective error function's 

inverse matrix. Because of this, these methods are not good for figuring out the orientation 

in real time in places where things move quickly, like in a quad rotor. 
 

3. Research Methodology 
 

We suggested that a Kalman filter be built on the ESOQ-2 algorithm. Figure 3 

shows how the Kalman filter is made up of its parts. It is clear that the accelerometer and 

magnetometer readings were sent to the ESOQ-2 algorithm as input vectors to make the 

observation quaternion. The supply of the quaternion that was created by the ESOQ-2 

technique as the observation vector for the Kalman filter helps to simplify the difficult 

computation by reducing the amount of work that has to be done. In order to prove that 

E2QKF is effective, we ran few experiments focusing on the motion of the upper arm. This 

result was superior than the advanced versions of other techniques. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1 Proposed System 
 

In 1965, the ESOQ -2 algorithm has been suggested as a solution for wabha problem. The 

essential part of the challenge is to find a solution to the optimum orthogonal matrix with a 

determinant of one, which will provide the least amount of loss function. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 ESOQ-2 algorithm. 
 

 

Then, we took into consideration that the environment needed to be quasi-static in order to 

use the ESOQ-2 method, which is a precondition for employing the algorithm. The 

accelerometer, on the other hand, is sensitive not only to the acceleration caused by gravity 

but also to the acceleration caused by human body movement. Even when the acceleration 

of the motion is very modest, the ESOQ-2 algorithm maintains a believable level of 

accuracy. But if the motion is very dynamic, the ESOQ-2 method won't be as accurate. The 

state quaternion, on the other hand, will be more accurate. In this case, we looked at how 

fast the movement was going. When the acceleration of motion is not too great, the 

accelerometer outputs are used to feed the ESOQ-2 algorithm with the gravity acceleration 

vector. The input was changed to the vector that was derived using the quaternion that was 

supplied if the motion acceleration was high. 
 

4. Results and Discussion 
 

Measurements of the upper arm according to a typical E2QKF are shown in figures 3a and 

3b. These measurements were obtained at a rate of 0.5 steps per second. 0.5 steps = 1 

second. The E2QKF readings of the upper arm at a rate of 2 movements per second are 

shown in figures 12a and 12b. The two tests are presented as a measurement that lasts for a 

total of one minute and twenty seconds. Between 0 and 10 seconds is the time allotted for 

the first calibration of the attitude, between 10 and 60 seconds and between 60 and 110 

seconds are the times allotted for repeat movements, and between 110 and 120 seconds is 

the time allotted for the static period. In Figures 3a and 4a, the Euler angles that were 

estimated by the Oqus 6+ are denoted by the blue solid lines, while the Euler angles that 

were approximated by applying E2QKF are denoted by the red dotted lines. The Euler 

angle errors of E2QKF are shown in figures 3b and 4b, respectively. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. E2QKF (a) The Euler angles (b) Euler angle errors.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. E2QKF (a) The Euler angles (b) Euler angle errors. 
 

 

The fact that the Euler angles calculated by E2QKF were quite similar to those 

calculated by Oqus 6+, as shown in Figures 3a and 4a, demonstrated that E2QKF produced 

highly accurate results. The Euler angle errors of varied speeds are shown to be consistent 



within a range of about 5 degrees in both Figure 3b and Figure 4b. This demonstrates that 

E2QKF is capable of adjusting to various motion speeds. Also, because the object moves 

the same way from 10 to 60 s and from 60 to 110 s, the error is close to repetition in both of 

these time periods, and the overall error stays within a certain angle. This showed that the 

filter could be used to measure long-term human body motion. 
 

5. Conclusion  
A new Kalman filter was suggested for figuring out how the human body moves with high 

accuracy by combining data from inertial and magnetic sensors. The results of this research are 

presented in the publication. Real-time production of correct orientation estimates of human 

body motion was the intended purpose behind the development of the Kalman filter, which was 

created with that objective in mind. The design of the filter takes use of a straightforward linear 

system model of the first order rather than a complex seven dimensional nonlinear system 

model. By preprocessing the data through ESOQ-2 technique, the Kalman filter was able to 

be made substantially more straightforward. The ESOQ-2 algorithm was adjusted to 

incorporate compensation for the accelerometer in order to make it more accurate in the 

case that the human body was moving quickly. This was done so that the algorithm would 

work properly even in the presence of rapid motion. This will make the calculation simpler. 

Experiments on how the upper arm moves were carried out in order to provide evidence 

that E2QKF is effective. In addition, we took into consideration the joint angle restriction, 

which allowed us to get more accurate answers, with an absolute maximum error of less 

than 3.0 degrees. This was accomplished by using the joint angle limitation as a constraint. 

In this particular research project, the method known as E2QKF was proposed for the 

purpose of tracing the motions of the human body. The outcomes of the experiments 

demonstrated that this method is capable of tracing the motions of the human body in real 

time and in a variety of different environments. This work has, in the end, provided an 

explanation of the methodology. 
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