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Abstract

Inertial orientation tracking is something that is being looked into right now, especially when it
comes to capturing human movement outside in real time. Quaternions are used to show how
the  navigation  frame and the  body frame are  connected  in  a  way  that  makes  them rotate
together. In this article, we explain how to use a quaternion-based Extended Kalman Filter to
figure out how a rigid body is oriented in three dimensions (EKF). The EKF uses the readings
from an Inertial  Measurement  Unit  (IMU),  which is  a  combination of  a  tri-axial  magnetic
sensor and an accelerometer.  The solution that  has been suggested is  a universal  filter  that
doesn't set the amount of freedom at the connections among the different parts of the model.
Even  when  the  observatory  conditions  are  important,  the  algorithm's  performance  can  be
measured with computer simulations and real-world testing.

Keywords :Extended Kalman filter, inertia, magnetic sensing, orientation

1.  Introduction

Inertial motion capture systems are made up of networks of body sensors. Here,
inertial measurement unit (IMU) sensors are connected to every important part that needs
to be watched (Kulbacki et al. 2015; Roetenberg et al. 2009). The tracked object model,
also called the skeleton, is made up of rigid-body segments, or "bones," that are connected
by joints. The motion of the person may be captured by mapping the orientations of the
IMUs to certain parts of the body model. It is possible to follow the overall stance if one
has information about the orientations of all of the segments throughout time. Published
research shows that there are many different ways to figure out where something is based
on a single IMU output signal.  Some examples of these approaches are Kalman filters
(Sabatini 2011; Madgwick et al. 2011) and complementing filters (Mahony et al. 2008).
This strategy involves just a loose coupling and treats each component in isolation, has a
number of limitations. It is not possible to readily include joint limitations into the tracking,
like those that are inherent in the human anatomy. During the process of estimating, the
links among the different segments are lost (Miezal et al. 2013). Additionally, it has been
shown that closely linked systems, in which all parameters and measurements are evaluated
concurrently in a single estimate problem, yield superior performance (Young 2010).
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Young et al(2010) .'s study used the "propagation of linear accelerations across the
segment hierarchy" to make it  easier  to  find the gravity components during high-speed
movements.  According  to  Szczsna  et  al.  (2016),  the  foundation  of  this  method  is  a
relatively simple complementary filter. The Denavit–Hartenberg convention serves as the
foundation for these kinds of solutions, while Euler angles serve as the representation of
orientation for them.

Extended Kalman filters are proposed by the authors of the lajpah et al. (2014) study for
each segment, and they use state vectors with 18 elements. The orientation is represented by
quaternions with the help of this method. Walking is the sole activity that can provide the

remedy.  Vikas  and  Crane  (2016)  offer  an  alternative  idea  in  which  the  joint  angle  is

estimated by putting more than one sensor on the segment.  Measurements of vestibular

dynamic  inclination  serve  as  the  foundation  for  this  system,  which  can  only  provide

estimations for two Euler angles. IMU sensors allow multibody systems to estimate and

monitor  a  variety  of  additional  characteristics,  including  locations,  velocities,  and

accelerations (Torres-Moreno et al. 2016). Lajpah et al. (2014) report errors, but they can't

be compared because the experiments were done in different ways and focused on different

movements. Also, the errors were calculated in a way that was not consistent. Even with

these things, the average angle errors were all between 4° and 7°. The numbers that were

used as references came from a variety of sources, including simulations, mechanical and

optical systems, and calculations made using depth camera data.

In  this  article,  a  quaternion-based  Kalman  filter  for  AHRS is  defined  using  an
Adaptive-Step  Gradient  Descent  (ASGD)  method.  In  order  to  prevent  singularities,
quaternions are used in the representation of the quadrotor's orientation. In the middle of the
quadrotor frame are  the inertial  and magnetic sensors  that  are used to  measure angular
velocity etc.,  After the gradient  descent  method and preprocessing of the accelerometer
have created the observation quaternions, they are fed into the Kalman filter . The angular
velocity and the observation quaternions that are generated by ASGD are brought together
by the Kalman filter. Since magnetic distortion would have an effect on the calculation of
level  attitude  (pitch  and  roll  angles),  an  AHRS  method  was  developed  to  isolate  the
magnetometer from the ASGD in order to just give heading reference. This approach is
known  as  the  AHRS  algorithm.  A  flight  controller  that  is  compact  in  size  has  been
developed for the purpose of building a quadrotor.

2. Related Works

The  technique  for  designing  a  quadrotor  places  a  significant  emphasis  on  orientation
estimation, which is also a fundamental component of real-time monitoring of human body
movements (Liem M.C.,  2014)  and placing industrial  robot  arms (KluzR.,.  2014).  Image-
based systems (Vianchada C., 2014), magnetic tracking systems (Song Shuang, et al. 2014),
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and ultrasonic tracking systems have each contributed to the development of a number of
algorithms  for  the  estimate  of  orientation  and/or  location  (Kim  SeongJin,  2013).  These
techniques of origin are vulnerable to the noise of the surrounding environment and have a
restricted measuring range. In recent years, inertial and magnetic sensors have been utilized
more often in quadrotors or aerial  robots for the purpose of orientation estimation.  These
sensors  do not  experience any restrictions  in  terms of  their  measuring range.  These little
modules, which can be mounted to a quadrotor and used to autonomously identify direction
without the need for supplied technology, are very portable.

Because quaternions work in R4, it is much simpler to describe any rotations in R3
without  encountering the singularity issue.  This has led to the quaternion being a preferred
alternative to the Euler angles in the process of orientation representation (Alaimo A., 2013). A
strap-down inertial system typically consists of a small-size tri-axis MEMS gyroscope and

accelerometer  that  are  attached to  a  quadrotor.  Accelerometers,  on  the  other  hand,  are

unable to determine orientation since they cannot detect rotation around the vertical axis. It

is termed the Attitude Heading Reference System (AHRS) when it is used in a navigation

system  (Collinson  R.  P.  G..2011).  In  his  2011  paper,  Liang  Yan-de  discussed  a

Complementary  Filter  (CF)  that  makes  use  of  magnetic  and  inertial  sensors.  The

quaternion-based  adaptive-gain  complementary  filter  is  a  proposal  that  was  made  by

Calusdian et al. (2011). Gradient Descent (GD) algorithm is an iterative approach that was

reported in (Zhang Hao, 2013) and (Madgwick Sebastian O. H., 2011) utilising MARG

(Magnetic, Angular Rate, and Gravity) sensors. Both of these studies were conducted with

MARG sensors. A gyroscope is used in both CF and GD in order to ascertain orientation.

The orientation inaccuracy that is caused by gyro bias drifts may be removed using an

accelerometer in conjunction with a magnetometer. However, it is important to note that

these approaches do not incorporate system flaws or the measurement noise of the sensors;

hence, the accuracy of the estimate is dependent on the inertial and magnetic sensors.

The Kalman Filter (KF) and the Extended Kalman Filter (EKF), both of which are
examples  of  well-known optimum estimate  techniques,  have  found use  in  a  variety  of
contexts, most notably in the estimation of the attitude of spacecraft (Lefferts E.J., 1982).
Sabatini  (2012)  suggested a typical  quaternion-based  EKF for  the  purpose  of detecting
orientation via the use of 9-DOF sensors.  Modeling included ten states,  including four-
dimensional  quaternions,  three-dimensional  acceleration  bias,  and  three-dimensional
magnetic field bias. After constructing the Jacobian matrix, the measurement model was
linearized so it could be used. In (Liang Jian-hong, 2012), a cubic polynomial temperature
curve was used to correct the gyro, and an EKF based on quaternions was given for the
AHRS. This  was done so that  a  better  estimate  of the  gyro  bias  drifts  could be  made
without making the state vectors bigger. Recent research (Li Wei, 2013, Lee J.K., 2012, and
Miao Cun-xiao, 2014) has focused on how to deal with external acceleration or magnetic
disturbance, both of which would mess up the orientation estimate a lot. On the other hand,
it's important to remember that the typical EKF has to linearize the process models and/or
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measurement models; this will always result in linearization errors being introduced into
the Kalman filter. In addition, the calculation of the Jacobian matrix by microcontrollers is
a significant challenge in terms of computing burden.

There  have  been  many  different  ways  created  for  quaternion-based  nonlinear
observation  in  order  to  prevent  linearizing  measurement  models  and  lower  the  amount  of
computing burden. Bach-man et al. wrote about a better Kalman filter based on quaternions that
can track the human body (2006). Using a Gauss-Newton iteration method, accelerometer and
magnetometer data were preprocessed to get quaternions, which were then given to the Kalman
filter (Marins J.L., 2001). In the paper written by Yun Xiao-ping in 2003, the authors lowered
the dimensionality of state vectors by using a reduced-order Gauss-Newton approach that made
use of error quaternions. In fact, Wahba's problem can be thought of as an estimation problem
in  which  measurements  of  vectors  are  taken  at  a  single  point  in  time.  A  "single-frame"
algorithm is a name for this type of solution. For a Kalman filter based on quaternions, the

QUaternion ESTimator (QUEST) method was made. People think that this is one of the best
"single-frame"  algorithms  for  quaternions  (Yun  Xiao-ping,  2006 ).  In  order  to  use  the
Gauss-Newton method, you would also have to figure out the objective error function's
inverse matrix. Because of this, these methods are not good for figuring out the orientation
in real time in places where things move quickly, like in a quad rotor.

3. Research Methodology

We suggested that  a  Kalman filter  be built  on the ESOQ-2 algorithm. Figure 3
shows how the Kalman filter is made up of its parts. It is clear that the accelerometer and
magnetometer readings were sent to the ESOQ-2 algorithm as input vectors to make the
observation  quaternion.  The supply  of  the  quaternion  that  was  created  by the  ESOQ-2
technique as the observation vector for the Kalman filter  helps to simplify the difficult
computation by reducing the amount of work that has to be done. In order to prove that
E2QKF is effective, we ran few experiments focusing on the motion of the upper arm. This
result was superior than the advanced versions of other techniques.

Figure 1 Proposed System

In 1965, the ESOQ -2 algorithm has been suggested as a solution for wabha problem. The
essential part of the challenge is to find a solution to the optimum orthogonal matrix with a
determinant of one, which will provide the least amount of loss function.
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Figure 2 ESOQ-2 algorithm.

Then, we took into consideration that the environment needed to be quasi-static in order to
use  the  ESOQ-2  method,  which  is  a  precondition  for  employing  the  algorithm.  The
accelerometer, on the other hand, is sensitive not only to the acceleration caused by gravity
but also to the acceleration caused by human body movement. Even when the acceleration
of  the  motion  is  very  modest,  the  ESOQ-2  algorithm  maintains  a  believable  level  of
accuracy. But if the motion is very dynamic, the ESOQ-2 method won't be as accurate. The
state quaternion, on the other hand, will be more accurate. In this case, we looked at how
fast  the  movement  was  going.  When  the  acceleration  of  motion  is  not  too  great,  the
accelerometer outputs are used to feed the ESOQ-2 algorithm with the gravity acceleration
vector. The input was changed to the vector that was derived using the quaternion that was
supplied if the motion acceleration was high.

4. Results and Discussion

Measurements of the upper arm according to a typical E2QKF are shown in figures 3a and
3b. These measurements were obtained at a rate of 0.5 steps per second. 0.5 steps = 1
second. The E2QKF readings of the upper arm at a rate of 2 movements per second are
shown in figures 12a and 12b. The two tests are presented as a measurement that lasts for a
total of one minute and twenty seconds. Between 0 and 10 seconds is the time allotted for
the first calibration of the attitude, between 10 and 60 seconds and between 60 and 110
seconds are the times allotted for repeat movements, and between 110 and 120 seconds is
the time allotted for the static period. In Figures 3a and 4a, the Euler angles that were
estimated by the Oqus 6+ are denoted by the blue solid lines, while the Euler angles that
were approximated by applying E2QKF are denoted by the red dotted lines.  The Euler
angle errors of E2QKF are shown in figures 3b and 4b, respectively.
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Figure 4. E2QKF (a) The Euler angles (b) Euler angle errors.

Figure 4. E2QKF (a) The Euler angles (b) Euler angle errors.

The fact  that the Euler angles calculated by E2QKF were quite similar  to  those
calculated by Oqus 6+, as shown in Figures 3a and 4a, demonstrated that E2QKF produced
highly accurate results. The Euler angle errors of varied speeds are shown to be consistent
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within a range of about 5 degrees in both Figure 3b and Figure 4b. This demonstrates that
E2QKF is capable of adjusting to various motion speeds. Also, because the object moves
the same way from 10 to 60 s and from 60 to 110 s, the error is close to repetition in both of
these time periods, and the overall error stays within a certain angle. This showed that the
filter could be used to measure long-term human body motion.

5. Conclusion

A new Kalman filter was suggested for figuring out how the human body moves with high
accuracy by combining data from inertial and magnetic sensors. The results of this research are
presented in the publication. Real-time production of correct orientation estimates of human
body motion was the intended purpose behind the development of the Kalman filter, which was
created with that objective in mind. The design of the filter takes use of a straightforward linear

system model of the first  order rather than a complex seven dimensional nonlinear system
model. By preprocessing the data through ESOQ-2 technique, the Kalman filter was able to
be  made  substantially  more  straightforward.  The  ESOQ-2  algorithm  was  adjusted  to
incorporate compensation for the accelerometer in order to make it more accurate in the
case that the human body was moving quickly. This was done so that the algorithm would
work properly even in the presence of rapid motion. This will make the calculation simpler.
Experiments on how the upper arm moves were carried out in order to provide evidence
that E2QKF is effective. In addition, we took into consideration the joint angle restriction,
which allowed us to get more accurate answers, with an absolute maximum error of less
than 3.0 degrees. This was accomplished by using the joint angle limitation as a constraint.
In  this  particular  research project,  the method known as E2QKF was proposed for  the
purpose  of  tracing  the  motions  of  the  human  body.  The  outcomes  of  the  experiments
demonstrated that this method is capable of tracing the motions of the human body in real
time and in a variety of different environments. This work has, in the end, provided an
explanation of the methodology.
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