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Abstract:

Brain tumors are very dangerous and can kill patients if they are not found in time. Finding
them is very important  for  their  survival.  The most  accurate  way to find tumors  is  with
Magnetic Resonance Imaging (MRI), which can clearly show that they are there on the video.
But it can also lead to less accurate reviews when an expert looks at the pictures by hand.
This is mostly because they are tired, don't know what they're doing, or there isn't enough
information in the picture. This can happen if the tumor isn't big enough to show up on the
pictures or if it has overlapping parts of the brain that make it hard for the specialist to find
the right  one because they are mistaken for healthy brain areas.  In order to improve the
accuracy of diagnoses, this study will suggest a segmentation method to help doctors find
brain tumors. On the MICCAI BraTS'20 standard dataset, this method can accurately separate
and  group  brain  tumors  with  98.81% pixel-level  and  98.93% classification  accuracy.  A
comparison with past studies shows that the offered way works the best.
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1.Introduction

Brain tumors are growths that happen when brain cells multiply in a way that isn't normal and
the brain's control systems stop working. Brain tumors affect about 700,000 people around
the world, and 86,000 new cases were found in 2019. Finding brain tumors early is very
important for diagnosing cancer because it helps doctors choose the best treatment plan to
save the patient's life.

On the other hand, it's hard to find and separate tumors using images and human analysis
because tumors can have both low-grade and high-grade features. This also takes a lot of time
and  doesn't  always  give  accurate  results  [2].  A  computer-aided  (CAD)  fully  automatic
diagnostic method that doesn't involve any harm could help doctors make earlier diagnoses,
analyze  data,  and  plan  treatments.  It  could  also  lower  the  death  rate  by  making  tumor
identification more consistent, faster, and more accurate [3]. Because of this, several CAD-
based picture segmentation methods are being looked into right now for this purpose [4].
Because CNN has grown, computer  vision and different deep learning-based brain tumor
segmentation methods have also come a long way [5].

We are focusing on tumor segmentation in this  study, which is thought to be one of the
hardest things to do with mixed MRI scans. This study used a set of files called BraTS 2020
from the Brain Tumor Segmentation Challenge 2020. For each patient, the collection includes
four different types of MRI scans, along with a carefully divided area of interest (ROI). These
are the important things that this study adds to the field:



 A convolutional network, also known as the U-net model,  is made to split images
quickly and accurately. 

  A new way of building the model architecture is shown instead of using fixed hyper-
parameters. In this way, the model is improved through an ablation study in which
different hyper-parameters are changed in a number of experiments.

•  During the pre-processing step,  the middle slice of the 3D MRI is automatically
removed, and a levelling method is used, which has an effect on the total performance.

•  Three of the four patterns are used to train and test the model individually to see
which one gives the best results.

•  The model can achieve ideal performance across a range of hyper-parameters, which
further proves that the design is stable and consistent in its performance.

2. Related Works

In the past few years, many new and different ways of automatically separating brain tumors
have  been  shown.  Pereira  et  al.  [6]  showed  how  to  use  a  CNN  model  to  handle  the
segmentation process. Our method is meant to get the best results with the least amount of
work. We did not use 3D data to train the model; instead, we used a single slice of a 3D MRI.
Other  authors  [7]  shown  a  computer  system  that,  with  the  use  of  MRI  pictures,  can
differentiate between a normal brain and an abnormal brain. Their system did a good job of
finding HGGs and LGGs, with scores of 99% for accuracy, 98.03% for precision, and 100%
for sensitivity. Noori et al. [8] made a 2D U-Net, a low-parameter network that works in two
different ways. They used the BraTS 2018 validation data set and got die scores of 89.5 for
the whole tumor (WT), 81.3 for the enhancing tumor (ET), and 82.3% for the tumor core
(TC). With the help of a 3D masked U-net multi-scale, Xu et al. [9] made it easier to tell
tumors apart. In order to get features from this network, you may feed it multi-scale building
photos and then add a 3D atrous spatial pyramid pooling layer (ASPP). On the BraTS 2018
proof set, they achieved a total score of 80.94% for ET, 90.34% for WT, and 83.19% for TC.
This technique received ratings of 76.90% for ET, 87.11 percent for WT, and 77.92 percent
for TC on the BraTS 2018 test set. There were two research [10] that tested a U-Net model
using the BraTS dataset and found that it performed well. Both of these studies employed the
BraTS dataset. When you look at the data from the first and third sets side by side, you can
see that they were 66.96% and 62.22% accurate at finding HGG cases. For LGG, the second
set was 63.15% accurate and the third set was 62.28% accurate. They came up with a model
that is a mix of a U-Net and a VGG16 [11]. 

The algorithm was successful in locating the region containing the tumor. Within the
context  of  this  work  [12],  the  segmentation  algorithms  Gamma,  U-Net,  SegNet3,  Res-
SegNet, and U-SegNet were all used using BraTS files. It was observed that Res-SegNet, U-
SegNet, and Seg-UNet were each right 93.3% of the time, 91.6% of the time, and 93.1% of
the time, respectively. Using feature-based fusion approaches may assist figure out how to
better separate tumor lesions into three regions, as stated by Pei et al. [13]. Although the
strategy was successful in improving the true separation of WT and ET, the improvement was



not very significant (DSCWT = 0.85 0.055, DSCET = 0.837 0.074). The use of a 3D deep
learning  system  known  as  context  deep-supervised  U-Net  is  suggested  as  a  method  for
separating brain cancers from 3D MRI images in a study conducted by Lin et al.  [14]. It
received a DSC of 0.92 for WT, 0.89 for TC, and 0.846 for ET when using the approach that
was proposed. In their paper, Punn et al. [15] discussed a 3D model called the U-net that may
be used in conjunction with 3D MRI to classify brain tumors into one of three categories:
WT, TC, and ET. A DSC value of 0.92 on WT, 0.91 on CT, and 0.84 on ET showed that the
suggested deep learning model worked the best. Getting the data to a normal state came first
in  both  of  these  tests.  They  came  up  with  the  idea  of  a  3D  U-Net  model  that  could
automatically tell brain tumors apart from other parts of 3D MRI data [16]. 

DATASET

The BraTS2020 dataset, which we got from Kaggle [17], is used to train and test our system.
There are a total of 473 3D pictures of people in the collection. Four types of MRI scans are
done on each patient: FLAIR, T1ce, T1, T2, and the related ROI (seg). The experts named the
ground facts that were given. Each 3D volume has 155 2D slices, or pictures, of brain MRIs
taken in different parts of the brain

3. Research Methodology

3.1. Data processing

Brats 2021 was the set that was used. First, the MRI pictures were made the same size, which
was 160 x 192 x 192 pixels. This size was found through testing, and the comparison was
based on Dice Score, which is talked about more in the data. In Figure 1, you can see some
MRI scans from two different files. Using trimming and scaling, the pictures are made to the
same size. For images that are smaller than the specified size, padding is used. For images
that are bigger than the specified size, cropping is used. Since there aren't many data sets,
augmentations  are  very  important.  To  make  things  even  better,  different  types  of
augmentations are used at random. It is used with the following additions:

• Flip the picture 

• Change the brightness

• Changes that are flexible 

• Changes in strength

It's important to note that the augmentations used are chosen at random from this set. This
makes the model resistant to overfitting. By picking the augmentations at random based on a
level, the following can be done. The data was split into 5 folds using K-Folds. Fold 1 was
used to test how well the model worked, and the other folds were used to train it. Table 1
shows how the data used was spread out. Fold 1 was picked because it is stable in terms of
metrics. Many people noticed that the results they got on Fold 1 went up in a pretty smooth
way. There are a good number of both busy and clean data examples in this collection. 



Table 1. To separate the data for brats in 2021.

Data Split 
Split Name Number Of Samples
Train Split 1000
Validation Split 250

3.2. Three-dimensional U-Net model with residual spatial pyramid pooling

SPP is where the idea for Atrous Spatial Pyramid Pooling came from. It builds on the idea of
SPP with parallel Atrous Convolutional layers. 

Figure 2. The schematic representation of SPP's architecture.



Attention is the process by which people concentrate on doing certain things. When we read,
we understand what's going on by looking at the words around us in a line. This information-
gathering system operates at the attention layer, and its primary responsibility is to perform
that  function.  Deep  learning  has  made  significant  use  of  the  attention  layer,  which  has
contributed to the development of cutting-edge outcomes. The model is brought into focus by
the combination of the outputs from two different encoder settings. The outcome of the two
encoder layers is then passed on to two distinct 3D convolutional layers, which perform the
operations listed below. After adding the outputs of the two layers together, the relu variable
is then utilized to turn it on. The process begins with an active output, which is then sent via a
3D convolutional  layer.  After  that,  it  is  readjusted,  and  finally  switched  on.  When  you
combine the result of these layers with activation, you can keep the context without losing
any of the dimensions. 

This is done to keep the idea of depth. Since the SPP layer gets its information from different
encoder layers, the output's size changes a lot when sharing is used.



In this study, tests are done on three model designs shown in Figure 3:

• No SPP: The SPP blocks would not be included, which would result in an improvement to
the context of the model.

• 1 SPP: The top SPP block would be eliminated from the design, leaving just the bottom SPP
block in  its  place.  This  would be the sole  block that  remained.  Therefore,  it  is  a  sound
strategy to enhance the model by making use of both the context and the attributes.

•  2 SPP: We used both of the available  SPP blocks.  This  kind has a  greater  number of
characteristics than the other two categories combined.

Figure 3. The architecture that was utilized for U-Net

3.2.1. The process of training

The picture size format is channel * length * width. Some of the numbers we tried are 160 ×
160 × 160, 128 × 160 × 160, and 160 × 192 × 192. Equation (1) shows how this works. gi
stands for the model forecast. The main reason this function was chosen was to keep the loss
function's attention off of fields in the background. 

        -------------- (1)

We found the problem of gradient growth through our experiments, which is why group
normalization  was  used.  We  couldn't  use  a  large  batch  size  for  training,  so  batch



normalization didn't work for us. Because of this, batch size 1 was chosen. For the training of
the models, an Nvidia Tesla V100 GPU was used.

Table 2. Training hyperparameters

3.2.2. Training procedure

Cross-validation was used to test the model, and it was tested on two different criteria:

The Dice Score, which can be seen in Equation 2, is the F1-Score given for each picture
pixel. The marked dots are the ground truth in this case. The dice score is a good measure
because  it  punishes  false  positives:  This  map  is  used  in  the  denominator  instead  of  the
numerator if it has a lot of fake results.

--------(2)

• Hausdorff Distance: This value (31), which indicates the degree to which each point in a
model set resembles a point in an image set, also indicates the degree to which the reverse is
true. So, this closeness can be used to figure out how similar two things are that are on top of
each other.  It's  important  to note that Hausdorff  Distance doesn't  care about how big the
background is. The Hausdorff distance works with the Dice measure to find the extensive
distance between the two shapes'  ends.  Since it  punishes outliers  harshly,  a forecast may



show almost voxel-perfect agreement.  Even though it is messier than the Dice index, this
number is still a good way to figure out how important segmentation is in the clinical setting.

4. Results and Discussions

This model is compared against two models taken from the Brats 2021 dataset, as well as one
model taken from the Brats 2020 dataset, and one model taken from the Brats 2019 dataset.

• Out of all the other designs that were proposed, the model consisting of a single SPP block
performed the best. As a result of this, we can observe that the improvement of features and
context work hand in hand with one another.

•  The  Enhancing  Tumor  class  results  in  all  three  models  having  the  smallest  Hausdorff
Distance. 

Table 3. Results accomplished by maintaining the status quo.

The model was trained using a 160x160x160 picture.  To determine the effect of a lower
picture size. Table 4 shows it.

Table 4. Results using 160-pixel-per-side images.



Table 4 allows inferences like these: The average roll score was 0.01 lower for models that
were  trained  on  images  of  different  sizes.  There  was,  however,  a  big  difference  in  the
Hausdorff distances. The models all follow the same pattern: the dice scores stop going up
after 60 epochs, no matter what size the training picture is. Secondly, models trained on 160
× 160 × 160 do not do as well as models trained on 160 × 192 × 192. In addition, it can be
seen that models with SPP take longer for the loss to converge. Even though SPP doesn't add
any new factors that can be trained, it still stops the model from converge. A trend-based
approach can be used to fine-tune the model at very low learning rates in order to make it
work better.

Figure 4. Dice score against. epochs. Hausdorff scores against. epochs.

If you look at the forecasts, you can see that the computer can accurately guess all kinds of
situations. The purpose of the image is to show how well the model can predict enhancing
tumors, which isn't seen much in the data. Also, the model can easily find whole tumor forms
that aren't normal, which shows that it can be used for real-life detection. 



Figure 5. Comparison of prediction and ground truth segmentation masks.

Conclusion

We propose U-Net with SPP and Attention Residual Connections in this study. By providing
high- and low-resolution data to the Unet decoders, this model connection notion improves
model knowledge and context. Model with attention, Model with attention and 1 SPP, and
Model  with attention  and 2 SPP are the results  of applying the suggested method to the
NvNet model at different rates in order to build these three versions of the model. The model
that just has one SPP but requires greater attention performs the best and produces results that
are on par with those produced by models with substantial transformer residue attachments.
Improving information and context will boost performance significantly. This strategy works
well  for  edge  computers  that  must  balance  speed  and  cost.  This  technology  might  be



employed in mobile health care stations with low processing capacity that need to diagnose
quickly.  Sometimes  the  speed gain  isn't  as  noticeable  as  with  hefty  techniques.  Because
components contribute trainable elements, patterns are picked up more. The technique has
only been modified for one model. We hope to support more 3D-Unet designs in the future.
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