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Abstract 

The conceptual division of remote sensing pictures is essential to remote sensing technology. 

However, predictions are hard to make because the main groups of these remote-sensing 

pictures are very complicated. Also, the things shown in shots from space are more involved, 

and many things in different groups are mixed. Because of this, it is hard to optimize based 

on the feature area. This study introduces a new non-supervised semantic segmentation 

method based on Mean Teacher (MT). This method is meant to make models more stable and 

feature-based class naming better. We also change things at the feature level. When we learn 

about features, we also use contrastive learning to ensure that things don't change when 

features change. The ISPRS Potsdam dataset and the challenging iSAID dataset have been 

used in many tests. 
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1. Introduction 

The accuracy of pictures taken by remote sensing has been slowly rising over the past few 

years [1]. It's easier to see the features of things in photos, but this worsens the differences 

between classes and the similarities between classes in picture data. This makes it harder to 

tell things apart in the spectral domain, which makes it hard to classify land use [2]. Figuring 

out what parts of a picture are meaningful based on their shape, colour, and surrounding 

information is called semantic segmentation. Then, these traits are used to put each pixel in 

the picture into a category. So, semantic segmentation is used to process high-resolution 

photos from space that contain more spatial information. There are now a lot of great 

semantic segmentation algorithms out there, like the FCN, Unet, Segnet, and Deeplab series 

[3]. These methods have done better than usual machine learning techniques when classifying 

land use. 

Usually, there are two steps in semantic segmentation: the encoder and the decoder. A lot of 

researchers have worked to make the encoder work better. Hu et al. made the channel focus 

device called the squeeze-and-excitation module (SEM) [4]. Based on the world average 

value of features, this system clearly shows how features depend on each other. 

After that, the links are used to scale traits in a way that isn't a straight line. To make the 

encoder work better, it helps the useful features stand out and hides the less useful ones. Woo 

et al. [5] made the convolutional block attention module (CBAM). With this method, the best 

and average values of traits worldwide are picked as the places to start making them better. It 

is used to improve the accuracy of channel focus in semantic segmentation. After thinking 

that feature statistics could be improved, Qin looked into how channel focus mechanisms 

choose features based on feature statistics. He got feature statistics by cutting down on data 

through frequency analysis. This is how he came up with the idea of frequency channel 

attention (FCA) [6]. This method did 1.8% better than the 



SEM on the ImageNet dataset for the Top-1 accuracy test. Fu et al. [7] developed the dual 

attention mechanism (DAM), a fresh way to make things that focus attention. This kind of 

network sees each prominent feature as a reaction to a unique part of the original picture. It 

then only improves the high-level features after taking these into account. Because the 

highest-level features have small feature sizes, the highest-level features decide the feature 

weights. 

As people think of new ways to pay attention to channels, remote sensing is used to sort land 

use from space. The SEM was added to remote sensing semantic segmentation by 

Panboonyuen et al. [8] to make it more accurate. They added more steps to the encoder than 

they already had [9]. This made it even more accurate. Abdollahi et al. added the SEM to the 

Unet network, which helped the decoder in some ways [10]. Lan et al. used the Deeplab 

concept and made the ASPA method [11] even better by adding the SEM to handle high-level 

features. They did what Yang et al. said and added the CBAM to the Unet network. They 

then used it in both the encoder and the decoder. 

Many use channel attention ways to separate things that mean different things using distant 

sense. Yet, remote sensing often uses channel focus methods [12]. It doesn't look like 

pictures from space are getting better. Remote sensing images are different from photos taken 

in nature. Natural pictures only show information in bands that the human eye can see. 

However, IR images often show information. On the other hand, the visible light band and 

the near-infrared band carry their data and are not strongly connected. [13] Channel attention 

methods that are used most often link feature values like average and maximum to feature 

weights. When land is used for different types of things, like vegetation, open land, and 

artificial surfaces, the NIR band can have higher average values because it reflects more 

light. Since the average number in the NIR band is the largest, it might seem like this band 

needs more attention. This difference could make it hard for the channel focus system to 

figure out how to evaluate weights. Furthermore, keeping an eye on the highest numbers of 

each band could cause too much focus on one class at the expense of others. 

Improved feature extraction has finally done what it was meant to do. The piece ends with 

analyzing how well the channel focus process works and how well the feature weights are set 

in terms of how easy they are to understand. [14,15] The FEM is an excellent way to figure 

out which features in remote sensing pictures are the most important. Visualizing feature 

weights and downscaling features can also ensure that feature weights are correct and 

improve the channel attention process. 

2. Related Works 

Semantic and mixed semantic segmentation studies will be critical for this part. 

2.1. Grouping based on meaning 

The Fully Convolution Network (FCN) [16] made a significant impact in the area of semantic 

segmentation. Pyramid Scene Parsing Network (PSPnet) [17] is new because it uses a 

pyramid 



Pooling is a way to combine feature maps from different sizes so that they have more 

accurate models of the features. By mixing skip links and expanded convolutions, Deeplabv3 

makes semantic segmentation even more precise. The HRNet model can accurately divide 

images at high resolutions using parallel convolution routes at different resolutions. 

Pyramid Scene Parsing Network (PSPnet) [17] is new because it uses pyramid pooling to 

combine feature maps from different sizes to have more accurate feature models. By mixing 

skip links and expanded convolutions, Deeplabv3 makes semantic segmentation even more 

precise. The HRNet model can accurately divide images at high resolutions using parallel 

convolution routes at different resolutions. 

Swin-Unet [17,18] is a pure Transformer model that was made to separate parts of medical 

images. Its skip links and encoder-decoder structure make it easy to get environmental traits 

and put them together. [19] Furthermore, RGB cameras can be influenced by lighting 

conditions or show picture fuzz when moving quickly, making semantic segmentation less 

accurate. So, more studies need to be done on combining different data types and using other 

monitoring technologies to make semantic segmentation more reliable and precise. 

2.2. Segmentation of Multimodal Semantic Data 

RGB pictures gather information by combining data from various sensor types. The main 

goal of this technology is to use how different modes of communication work well together 

to make semantic division more accurate and reliable. [20,21] The new co-attention feature in 

CANet, on the other hand, changes RGB and depth information to work together. 

This method shows that thermal image data can help mean segmentation tasks. Researchers 

are also looking into improving the semantic segmentation performance in self-driving cars 

by combining light flow data with RGB data. [22] For RGB-LiDAR, researchers have 

devised several ways to integrate data from these two types of sensors. Builds more robust 

cross-modal feature representations by using connections between modes. CMNeXt [23] 

speeds up semantic segmentation by adding to the model in a way that isn't smooth. 

There are two main ways to build multimodal semantic segmentation models: Firstly, by 

combining data from different modes as the model's sources [24]. Conversely, this method 

has big problems because it can only be made for one mode. In the second method, features 

are extracted independently for each modality. This means that different backbones are 

needed for various types of modality feature extraction jobs. [25] While this method works 

well for cross-modal semantic segmentation, it's hard to add more modality types because of 

how hard it is to make complex feature extraction modules for each one. 

3. Materials and Methods 

3.1. Methods 



The Mean Teacher format is an excellent semi-supervised learning method. Its main goal is to 

make the model more reliable so that it is less affected by small changes in the input data. We 

changed some things about both the student and teacher networks by adding new modules 

that change stuff after the encoder. Along with the encoder, we added a feature representation 

head to help contrastive learning move forward and do our job and data better. Figure 1 

clarifies how the network and model flow are set up. 
 

Figure 1. Proposed approach framework overview. 

This method has two networks: one for students and one for teachers. Both networks are put together 
in the same way. Things work better because of three loss functions. The number comprises the 
predicted labels of the annotated images and the ground truth. The number consists of the predicted 
labels of two enhanced unannotated images. The number consists of the predicted labels of two 
images where contrastive learning has changed the features. Labels on a dataset: ={(, )}| | =1 This file 
does not have any labels: ={( )}| | =1 This way of learning is based on the idea that named pictures are 
not the only ones in the training set, or | |≦| |. Students will have their network, and teachers will 
have their network. The student and teacher networks are built similarly but have different 
parameters. The teacher network's parameters are the exponential moving average (EMA) of the 
student network's parameters. Here is the formula for updating : 

 

(1) 

Feature Sampling with Entropy Threshold Assist for Learning from Differences: In this work, 

the contrastive learning method is used to help make the best use of the feature area. We use 

entropy as an extra way to choose questions positive and harmful keys for contrastive. 



learning. We get rid of keys that are more right when we set an entropy limit. To learn by 

comparison and work better, do these things. 

3.1.1. Mean Teacher Model with a Disturbed Feature 

A tool for changing the features is added at the end of the encoder process. The features that 

come straight from the encoder and decoder might not work. They need to be broader. An 

extra picture head is made to draw out and contrast traits, which helps tell them apart. The 

picture head r from [15] is used for this. When the student network is trained again, the loss 

changes how it is set up. 

We randomly pick pictures every time we train, so there are always the same number of 

named images ( ︑) and nameless images ( ), with | |=| |. The student network gets each 

named picture to guess what it is. Next, we check the directed loss against the actual labels.  
 

 

 

(2) 

 

 

(3) 

 
㸑︑ (•)  (•) stands for the cross-entropy loss and means the marks that were 

 

 

added by hand.  (•)The softmax function is shown by  (•), and the one-hot encoding form is shown 

by  (•). You can change the level of the picture with strong image enhancement. On the other hand, the 

process without image enhancement changes the features in a way that makes more sense and is easier to work 

with. In this way, we simultaneously add changes at both the picture and feature levels, improving the model in 

more than one way. After going through different enhancement processes, the pictures are sent to the student 

network, which creates two forecast labels: 1 1 and 2 2. After they go through the encoder, a VAT adjustment is 

added to pictures that haven't been enhanced. This is what it means: 

 

(4) 

 

 

(5) 

 

 

(6) 

The above method shows the student network's change to Virtual Adversarial Training 

(VAT). ( (ℏ( ); )) ( (ℎ( ); )) is the softmax chance of the label that the picture should have 

given itself if it hadn't been changed in any way using the student 



network. ( (ℎ( )+ ; )) ( (ℎ( )+ ; )) is the biggest possible chance that a label will be made after 

the image that wasn't improved with VAT disturbance is improved. The Kullback-Leibler 

divergence, shown by [•], is a way to find the difference between two sets of 

odds. 

 

The forecast of weak perturbation makes the estimates of solid perturbation work better. In 

the training network, a feature jittering method is selected, which has less effect on the 

features. The prediction map 2= ( ( 2)) 2 = ( ( 2 )) is made after the feature changes are added 

and the data is sent through the decoder. 

 

 

 

(7) 

3.1.2. Contrastive Learning with Entropy Threshold Helped Sampling of Features 

It was first used for picture-sorting tasks. The goal of contrastive learning is to find the 

question, the positive and negative keys. The negative key and the question are to be 

compared to learn how they are alike and different. When semantic segmentation is used with 

this method, the sample spread goes from a picture to a pixel. It's essential to pick suitable 

samples for the positive and harmful keys to contrastive learning. Selecting the right harmful 

keys is critical to get the most out of contrastive learning. It's simple to choose the question 

and the correct answer. To answer this case problem, we will discuss the idea of entropy. 

Entropy is a way to measure how unsure or random a set of data or a chance distribution is. 

You can use the entropy of the chance distribution of each image to figure out how sure or 

unsure the forecast is. What does a low Softmax probability entropy number mean? It means 

that the model is very sure it knows which group the pixel belongs to. We can make it more 

likely that the negative key we picked is not a fake positive one. This helps to make 

contrastive learning work better. This is how contrastive learning works, as shown in Figure 

2. 

 

Figure 2. Contrastive learning with entropy. 



A level of entropy is chosen, as the red line in the picture shows. For contrastive learning, the 

pixels and their traits less than the entropy cutoff are selected as the most important ones.  

This paper uses contrastive learning loss, which looks like this: 

 

 

 

(8) 

 

 

 

(9) 

The best guess for the jth point in the ith picture being of class c is. We set a limit and the 

critical value to help us pick the negative key. Minor changes in the teacher network and 

significant changes in the student network occur when you change the traits. This is why, 

most of the time, we use the questions the teaching network comes up with. These are some 

ways to use the word "query." 

(10) 

 

(11) 

As long as ❑ Thank you very much. Eighty per cent of our questions come from samples in 

the teacher network. The other twenty per cent come from samples in the student network. 

Once the question and positive key have been chosen, the harmful keys ( ) are selected 

randomly from the rest of the features and must also meet the entropy threshold condition, 

explained below.: 

 

(12) 

The contrastive loss can be found once the final key values have been chosen. Finally, the 

model in this work has the following loss update: 

3.2. Datasets 

3.2.1. USAID 

The USAID dataset is used in this study to see how well our suggested method for semantic 

segmentation works. In the said collection, there are 2806 high-resolution flyover shots. To 

simplify the tests, the dataset is split into a training set with 1411 pictures and a test set with 

458 images. A way we use to make the data better is to randomly cut the images to 512x512 

pixels while they are being trained. 

3.2.2. Potsdam 



The Potsdam collection can also be used. The books in the Potsdam library are from around 

Germany around Potsdam. In semantic segmentation for remote sensing, we always use this 

dataset. The International Society for Photogrammetry and Remote Sensing (ISPRS) and the 

German Society for Photogrammetry, Remote Sensing, and Geoinformation (DGPF) 



 

 

 

 

 

 

 

 

 

They worked together to make it. High-resolution pictures from above with an UltraCamXp 

large-format digital overhead camera make up the set. Each picture is 5 cm away from the 

next. The images in this set are all bigger than the pictures in the Vaihingen set. They each 

show more about the land and cover an area of about 1000x1000 metres. 

3.3. Evaluation Metrics 

The mean intersection over union ( ) is used to measure this. It is a famous variable used for 

semantic segmentation tasks. It measures how much-projected segments and their ground 

facts match. Giving you a complete picture of how accurate the model is. People who work 

with semantic segmentation often talk about the mean ( ) found for all the classes in the 

dataset. 
 

 

3.4. Implementation Detail 

The project used Deeplab V3+, and ResNet-101 was the core network. Pics are randomly cut 

to 512x512 sizes before they are sent to the training network. You can train for 200 times in a 

single batch. The speed of learning has been slowed down by 0.9 of a second. The stochastic 

gradient descent (SGD) engine was used. The learning rate starts at 0.01 but drops over time 

to 0.0005. The collection has groups of 1/2, 1/4, 1/8, and 1/16 named pictures. The model is 

trained with the rest of the images that don't have names. For the extra drop's weight, it is set 

to 0.4. When the number of 1 is changed, the EMA smoothing factor is set to 0.99. 

4. Experiments 

4.1. Data 

The slide window cropping method cuts the remote sensing picture into 300 × 300 deep 

learning samples. Houses, roads, woods, and lakes are some features that can be found in 

remotely sensed images. 

There are two sets of data: the training set and the validation set. The ratio of the training set 

to the validation set is 4:1. QGIS is used for the picture labels. Different grey colours are used 



to show various parts of the picture. You can tell cells of the same type apart because they all 

have the same grey value. 



 

Figure 3. Images and labels from remote sensing. 

Randomly moving the training data across, down, and diagonally, along with applying the 

right amount of linear stretching. To make the validation dataset look like the variable 

domain, it is randomly stretched by 0.8%, 1%, 1.5%, and 2%. 

4.2. Environment and Parameter Configuration 

Table 1 shows how the system is set up for AS-Unet+ 

+. Table 1. Configuring the environment. 
 

 

Table 2 shows the training values that were used in the test. 

Table 2. Set parameters. 

Name 

GDAL 

Version 

3.3.3 

segmentation-models- 
0.3.2 

PyTorch 

CUDA 11.1.0 



 

Parameter Value 
 

Batch size 16 
  

Initial learning rate 0.0001  
  

Learning Momentum 0.9 

 
4.3. Evaluation Indicator 

The measures used for review are IoU, MIoU, Precision, and Recall. A confused matrix, like 

in Table 3, determines the rating signs. 

Table 3. Classification outcome confusion matrix. 
 

 
 

Reality 

 
Predicted Results 

  
Positive Negative 

Positive   

Negative   

Precision is the percentage of accurately predicted images in a particular group. Here's how to 

figure it out: 
 

This is how the method for figuring out recall works: recall is the percentage of all the pixels 

in a particular group that the network correctly identified. 

 

 

If the expected result and the actual number of each class are compared, the result is called 

IoU. The MIoU can be found by adding the average number to the crossing ratio of each 

class. The projected number is more likely to be correct if the MIoU is bigger. Here's how to 

figure out the IoU and MIoU: 
 

 

where n is the number of groups that can separate images. 

4.4. Experimental Results 



 

Elements Valuation Indexs AS-Unet++ A-Unet++ S-Unet++ Unet++ 

The attempt with ablation 

This is how we checked how well the two parts of the ASPP and SE model worked: Different 

networks made the predicted division plans for lakes, trees, roads, and houses, as seen in 

Figure 4. 
 

Figure 4. Ablation experiment segmentation predictions. 

Some houses are missed by Unet++ when it comes to recognizing their parts because of 

differences in light and colour, and the way the edges of houses are segmented could be better 

for recognition. The result of the separation of house edges has yet to get better. Both missed 

detection and the edge segmentation effect improved in the AS-Unet++ network after adding 

both modules. Even though it had one more module than A-Unet++, it wasn't better at 

recognizing houses than that version. It was better at recognizing omissions in S-Unet++ with 

the SE model but did not need to criticize the edges of houses. Table 4 shows the Precision, 

Recall, and IoU of different networks used in the test sets to predict houses, roads, forests, 

and lakes. 

Table 4. Ablation experiment network comparisons. 
 

 

 

 

 

 

Forest Recall 0.859 0.813 0.802 0.766 

 
IoU 0.854 0.802 0.787 0.759 

 

Lake 
Precision 

Recall 

0.907 

0.917 

0.882 

0.905 

0.857 

0.878 

0.852 

0.863 



Elements Valuation Indexs AS-Unet++ A-Unet++ S-Unet++ Unet++ 

 IoU 0.912 0.894 0.869 0.858 
      

 

Figure 5 shows the MIoU graphs in the three types of networks while they were trained with 

homes, roads, woods, and lakes. 
 

Figure 5. The IoU graphs are used for training in AS-Unet++, Unet, and AS-Unet. 

The AS-Unet++ proof set's MIoU reached 88.9% after it was trained. On the other hand, Unet 

and AS-Unet had an MIoU of 80.8% and 85.8% on the test set. 

Table 5. Network comparisons on various verification sets. 
 

 

 

Elements Valuation Index AS-Unet++ AS-Unet Unit 
 

 Recall 0.879 0.858 0.783  

 

 
 

    

 IoU 0.874 0.852 0.781  
 

    

 

 Precision 0.847 0.779 0.702  

      

Forest Recall 0.856 0.788 0.718  
 

    

 

 IoU 0.851 0.784 0.711  

 
 

Precision 0.902 0.857 0.842  

Lake Recall 0.911 0.865 0.853  
 

     

      

 IoU 0.905 0.862 0.848  
 

    

 



AS-Unet and Unet are two networks. The three differences stayed relatively the same, as 

shown in Figure 6. During the training to recognize road parts, the AS-Unet++ network 

changed the least, just a little faster than the other two. 

Table 6. Network performance on various test sets. 
 

Elements 

    

 
Valuation Indexes   AS-Unet++  AS-Unet   Unit  

    

 

 

House 

  

Recall   0.978  0.943   0.899   

IoU   0.971  0.937   0.896   

 Precision  
  

 0.907  
  

0.856  
  

0.841  
  

        

Lake Recall 
  

0.917 
 

0.863 
  

0.852 
  

  

IoU   0.912 

  

0.859   0.846 

  

      
    

 

Ninety-two per cent of the test set had MIoUs for AS-Unet++, eighty-five per cent for Unet, 

and eighty-five per cent for AS-Unet. Based on what you just read, AS-Unet++ does better 

on all test sets than Unet and AS-Unet. 

5. Conclusions 

In addition, AS-Unet++ can successfully lower the number of times devices are misidentified 

or missed. Even though the method in this work makes the segmentation more accurate, the 

generalization condition is still challenging to meet when dealing with complex and changing 

remote sensing pictures, like those that show elements in different lighting conditions or with 

complicated shapes. Bettering the model's ability to generalize and getting even better at 

classification should be the main goals of future work. 
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